开普勒第一定律(轨道定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。
用公式表示为:SAB=SCD=SEK简短证明:以太阳为转动轴,由于引力的切向分力为0,所以对行星的力矩为0,所以行星角动量为一恒值,而角动量又等于行星质量乘以速度和与太阳的距离,即L=mvr,其中m也是常数,故vr就是一个不变的量,而在一短时间△t内,r扫过的面积又大约等于vr△t/2,即只与时间有关,这就说明了开普勒第二定律。
开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
用公式表示为:R^3/T^2=k其中,R是行星公转轨道半长轴,T是行星公转周期,k=GM/4π^2=常数
关于行星运动规律的开普勒三大定律是:①所有的行星分别在不同的椭圆轨道上围绕太阳运动,太阳处在这些椭圆的一个焦点上.②对每个行星而言,行星和太阳的连线在任意相等的时间内扫过的面积都相等("面积速度"不变).③所有行星的椭圆轨道的半长轴的三次方跟公转周期的二次方的比值都相等.
开普勒定律:也统称“开普勒三定律”,也叫“行星运动定律”,是指行星在宇宙空间绕太阳公转所遵循的定律。由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律。
开普勒的三条行星运动定律改变了整个天文学,彻底摧毁了托勒密复杂的宇宙体系,完善并简化了哥白尼的日心说。
开普勒第一定律
开普勒第一定律,也称椭圆定律;也称轨道定律:每一个行星都沿各自的
椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律
开普勒第二定律,也称面积定律:在相等时间内,太阳和运动中的行星的连线(向量半径)所扫过的面积都是相等的。 这一定律实际揭示了行星绕太阳
公转的角动量守恒。
开普勒第三定律
开普勒第三定律,也称调和定律;也称周期定律:各个行星绕太阳的椭圆轨道的半长轴的立方和它们的公转周期的平方成正比。 由这一定律不难导出:行星与太阳之间的引力与半径的平方成反比。这是牛顿的万有引力定律的一个重要基础。 开普勒定律这里,a是行星公转轨道半长轴,T是行星公转周期,K是常数。