1.有两条雪道平行建造,左侧相同而右侧有差异,一条雪道的右侧水平,另一条的右侧是斜坡。某滑雪者保持一定姿势坐在雪橇上不动,从h1高处的A点由静止开始沿倾角为θ的雪道下滑,最后停在与A点水平距离为s的水平雪道上。接着改用另一条雪道,还从与A点等高的位置由静止开始下滑,结果能冲上另一条倾角为α的雪道上h2高处的E点停下。若动摩擦因数处处相同,且不考虑雪橇在路径转折处的能量损失,则( )

A.动摩擦因数为tan θ B.动摩擦因数为
C.倾角α一定大于θ D.倾角α可以大于θ
2.如图所示,质量为m的小球,从离地面H高处由静止释放,落到地面,陷入泥中h深处后停止,不计空气阻力,则下列说法正确的是( )

A.小球落地时的动能等于mg(H+h)
B.小球克服泥土阻力所做的功等于小球刚落到地面时的动能
C.泥土阻力对小球做的功mg(H+h)
D.小球在泥土中受到的平均阻力大小为mg(1+
3.如图所示,质量为

A.小车通过C点时对圆环的压力为mg
B.小车能通过圆管的最高点F
C.电动小车输出的机械功率不能小于
D.若仅把圆环和圆管位置互换,小车仍能通过圆环的最高点C
4.如图所示为地铁站用于安全检查的装置,主要由水平传送带和X光透视系统两部分组成,传送过程传送带速度不变。假设乘客把物品轻放在传送带上之后,物品总会先、后经历两个阶段的运动,用v表示传送带速率,用μ表示物品与传送带间的动摩擦因数,则( )

A.前阶段,物品可能向传送方向的相反方向运动
B.后阶段,物品受到摩擦力的方向跟传送方向相同
C.v相同时,μ不同的等质量物品与传送带摩擦产生的热量相同
D.μ相同时,若v增大为原来的2倍,则同一物体前阶段的对地位移也增大为原来的2倍
5.在粗糙水平地面上竖直放置一如图所示装置该装置上固定一光滑圆形轨道,总质量为M。一质量为m的小球在圆形轨道最低点A以水平初速度v0向右运动,恰好能通过圆形轨道最高点B,该装置始终处于静止状态,则在小球由A点到B点的过程中(重力加速度取g),下列说法正确的是( )

A.当小球运动与圆心等高处的C点时,装置对地面的摩擦力方向向左
B.当小球运动到B点时,装置对地面的压力大小为Mg+mg
C.当小球在A点时,装置对地面的压力大小为Mg+6mg
D.小球运动到与圆心等高处的C点时,装置对地面的压力大小为Mg+mg
6.质量为m的物体静止在水平面上,用水平力拉物体,运动一段距离后撤去此力,最终物体停止运动。物体运动过程中的动能随位移变化的

A.水平拉力是物体所受摩擦力的2倍
B.物体与水平面间的动摩擦因数为
C.水平拉力做的功为
D.水平拉力的大小为
7.如图所示,A、B是静止在水平地面上完全相同的两块长木板。A的右端和B的左端相接但不粘连。两板的质量均为m,长度皆为l;C是一质量为

A.木板A、B始终是静止
B.木板B滑行的距离为
C.系统因摩擦产生的总热量为
D.当小物块C滑到木板B的右端时,木板B的速度最大
8.如图所示,水平传送带顺时针传动速率始终为v,在其左端无初速释放一小煤块,小煤块与传送带间的动摩擦因数为μ,若小煤块到达传送带右端时的速率恰好增大到v。下列说法正确的是( )
A.小煤块在传送带上运动的时间为
B.小煤块在传送带上留下的痕迹长度为
C.此过程产生的热量为
D.传送带对小煤块做功
9.如图所示,半径为r的半圆弧轨道ABC固定在竖直平面内,直径AC水平,一个质量为m的物块从圆弧轨道A端正上方P点由静止释放,物块刚好从A点无碰撞地进入圆弧轨道并在圆弧AB段做匀速圆周运动,到B点时对轨道的压力大小等于物块重力的2倍,重力加速度为g,不计空气阻力,不计物块的大小,则:( )

A.物块在B点的速度为
B.物块的释放位置P距离A点的高度为r
C.物块从A运动到B的时间为
D.物块从A运动到B的过程中克服摩擦力做的功为mgr
10.如图所示,劲度系数为k的竖直轻弹簧的下端固定在水平面上,上端与物块A连接,物块B与物块A之间用一绕过定滑轮O的轻绳连接,B放在固定斜面的上端(用外力控制B)。OA绳竖直,OB绳与倾角为

A.释放B后的瞬间,轻绳的弹力大小为
B.当A的速度最大时,弹簧处于拉伸状态
C.A的最大速度为
D.当B处于最低点时,弹簧处于压缩状态
11.质量为2kg的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块动能Ek与其发生位移x之间的关系如图所示。已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g取10m/s2,则下列说法正确的是( )

A.x=1m时物块的速度大小为2m/s
B.x=3m时物块的加速度大小为2.5m/s2
C.在前4m位移过程中拉力对物块做的功为25J
D.在前4m位移过程中物块所经历的时间为2.8s
12.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极短时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:
(1)整个过程中摩擦阻力所做的总功;
(2)人给第一辆车水平冲量的大小;
(3)第一次碰撞系统功能的损失量。

13.如图所示的装置是由竖直挡板P及两条带状轨道Ⅰ和Ⅱ组成。轨道Ⅰ由光滑轨道
(1)若小滑块沿轨道Ⅰ返回,且恰好能到达B点,则H的大小为多少?
(2)若改变直轨道
(3)在满足(2)问的条件下,请写出小滑块刚过F点(只考虑首次通过F点)时对轨道的压力大小与H

14.如图(a)所示,一质量为m的滑块
(1)滑块刚释放瞬间的加速度大小;
(2)滑块滑至斜面底端时的速度大小;
(3)滑块滑至半圆轨道的最高点C时,对轨道的压力大小。

15.如图,水平放置做逆时针运动的传送带左侧放置一个半径为R的光滑
(1)物块A与B碰撞前瞬间速度大小;
(2)若传送带速度取值范围为

16.中国第三艘航母003号的建造已经接近尾声,下水指日可待。据报道,该航母将用电磁弹射技术,相比于滑跃式起飞,电磁弹射的加速更均匀且力量可调控。若新型国产航母的起飞跑道由电磁弹射区域和非电磁弹射区域两部分组成。在电磁弹射区域电磁弹射可以给飞机提供恒定的牵引力F1=1.0×106 N,非电磁弹射区域的长度L 1=90 m。某重型舰载飞机的质量m= 30 t,从跑道末端起飞速度v= 100 m/s,起飞过程喷气发动机可以持续提供F2=6.3× 10 5N的恒定推力,其所受阻力恒定且所受阻力与其受到的重力大小之比k=0.1。取重力加速度大小g=10 m/s2求:
(1)飞机离开电磁弹射区域的速度大小v1
(2)起飞跑道总长度L
17.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的手眼合一能力。某弹珠游戏可简化成如图所示的竖直平面内ABCDEFG透明玻璃轨道,其中C为BCD轨道的最低点,E为DEF管道的最高点,FG为动摩擦因数μ=0.8的粗糙直轨道,在轨道首端A和末端G处均有一反弹膜,弹珠与其碰撞无能量损失。其余管道和轨道均光滑。各部分轨道在连接处均相切。一质量m=100g,直径略小于管道内径的弹珠从A点静止滑下,沿轨道ABCDEFG运动并弹回,已知H=0.8m,R=2m,L=0.5m,圆弧轨道BCD和管道EFG的圆心角为120°,g=10m/s2,求:
(1)弹珠第一次运动到C点时对轨道的压力;
(2)若给小球提供适当的初速度,可以让小球在通过E点时对管道内外壁刚好没有压力,求初速度的大小;
(3)若游戏设置9次通过E点便获得最高分,求要获得最高分,小球在A点初速度的范围。

18.如图所示,质量为m的小木块甲以一定的初速度从O点沿粗糙的水平面向右运动,到P点时与质量为2m的静止的小木块乙相碰,与木块乙碰撞后,木块甲返回到0、P的中点停止,已知两小木块与水平面之间的动摩擦因数均为μ,
(1)木块甲从O点运动到P点与木块乙碰撞前的时间(可用根式表示);
(2)木块乙停止的位置距离P点的距离。

19.如图所示,水平面内的导轨与竖直面内的半圆形光滑导轨在B点相切。半圆形导轨的半径为R,一个质量为m的滑块(视为质点)从A点以某一初速度沿导轨向右运动,滑块进入半圆形导轨后通过C点时受到轨道弹力的大小
(1)滑块通过半圆形导轨的B点时对半圆形导轨的压力大小;
(2)滑块在A点时的动能Ek。

20.如图所示,某物块(可看成质点)从A点沿竖直光滑的
(1)物块滑到B点时速度的大小;
(2)物块滑到C点时速度的大小。

21.如图所示,AB为长L0=2m的粗糙水平轨道,MD为光滑水平轨道,圆O为半径R=0.45m的下端不闭合的竖直光滑圆轨道,它的入口和出口分别与AB和MD在B、M两点水平平滑连接。D点右侧有一宽x0=0.9m的壕沟,壕沟右侧的水平面EG比轨道MD低h=0.45m。质量m=0.2kg的小车(可视为质点)能在轨道上运动,空气阻力不计,g取10m/s2。
(1)将小车置于D点出发,为使小车能越过壕沟,至少要使小车具有多大的水平初速度?
(2)将小车置于A点静止,用F=1.9N的水平恒力向右拉小车,F作用的距离最大不超过2m,小车在AB轨道上受到的摩擦力恒为f=0.3N,为了使小车通过圆轨道完成圆周运动进入MD轨道后,能够从D点越过壕沟,力F的作用时间应满足什么条件?(本问结果可保留根号)

22.如图甲所示,游乐公园的回环过山车为避免游客因向心加速度过大而难以忍受,竖直面的回环被设计成“雨滴”形而不是圆形。图乙为某兴趣小组设计的回环过山车轨道模型,倾角
(1)求滑块在D点时对轨道的压力;
(2)求曲线轨道CDE上高度
(3)要使滑块能顺利通过轨道CDE,运动时的向心加速度不超过3g。求滑块在轨道AB上释放点高度H的范围。

23.半径
(1)碰撞后瞬间,物块的速度是多大?
(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少?

24.一平台如图所示,物体A与水平面间的动摩擦因数µ=0.2,右角上固定一定滑轮,在水平面上放着一质量m=1.0kg、大小可忽略的物块A,一轻绳绕过定滑轮,轻绳左端系在物块A上,右端系住物块B,物块B质量M=2.0kg,开始两物体都处于静止状态,绳被拉直,物体A距滑轮4.5m,B到地面的距离h=1m,忽略滑轮质量及其与轴之间的摩擦,g取10m/s2,将A、B无初速释放后,求:
(1)轻绳中的最大拉力;
(2)物体A沿水平面运动的位移。

25.某同学参照过山车情景设计了如下模型光滑的竖直圆轨道半径R=2m,入口的平直轨道AC和出口的平直轨道CD均是粗糙的,质量为m=2kg的小滑块与水平轨道之间的动摩擦因数均为μ=0.5,滑块从A点由静止开始受到水平拉力F=6N的作用,在B点撤去拉力,AB的长度为l=5m,不计空气阻力。(g=10m/s2)
(1)若滑块恰好通过圆轨道的最高点,求滑块沿着出口的平直轨道CD能滑行多远的距离?
(2)要使滑块能进入圆轨道运动且不脱离轨道,求平直轨道BC段的长度范围。

26.如图所示,质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆弧轨道下滑。B、C为圆弧的两端点,其连线水平。已知圆弧半径R=1m,圆弧对应圆心角为θ=106°,轨道最低点为O,A点距水平地面的高度h=0.8m。小物块离开C点后恰能无碰撞的沿固定斜面向上运动,上升能到达的最高点为D。物块与传送带间的动摩擦因数为
(1)小物块离开A点的水平初速度v1;
(2)小物块经过O点时对轨道的压力;
(3)PA间的距离;
(4)物块由C上升到最高点D所需时间。

27.如图所示,光滑圆弧面
(1)小滑块第一次滑到C点时的速度;
(2)小滑块到达的最高点离C点的距离;
(3)小滑块最终停止运动时距离B点的距离。

28.如图所示,质量m=0.4kg的小物块,放在半径R1=2m的水平圆盘边缘A处,小物块与圆盘间的动摩擦因数
(1)圆盘对小物块m做的功;
(2)小物块刚离开圆盘时A、B两点间的水平距离;
(3)假设竖直圆轨道可以左右移动,要使小物块能够通过竖直圆轨道,求竖直圆轨道底端D与圆弧轨道底端C之间的距离范围。

29.如图所示,光滑斜面与半径为R的光滑圆弧轨道平滑连接并固定在竖直面内。小球A、B质量分别为m、βm(β为待定系数)。A球从斜面上某点由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为
(1)A球释放点到轨道最低点的高度h;
(2)小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。

30.如图所示,一工件置于光滑水平地面上,其AB段为一半径R=0.5m的光滑圆弧轨道,BC段为一长度L=0.5m的粗糙水平轨道,二者相切于B点,整个轨道位于同一竖直平面内,P点为圆弧轨道上的一确定点。一可视为质点的物块,其质量m=0.2kg,与BC间的动摩擦因数μ=0.4.工件质量M=0.8kg,取g=10m/s2。
(1)若工件固定不动,将物块由P点无初速度释放,滑至C点时恰好静止,求P、C两点间的高度差h;
(2)若工件可以在光滑水平地面自由滑动,将物块由P点无初速度释放,求工件停止运动时相对地面的位移。

