偏微分多项式在数学学、工程技术和其他科学的许多领域都有着非常广泛的应用。在上述研究领域中常常出现好多描述个别数学规律的等式,也称销信为物理数学等式。通过对那些多项式的求解,一方面可以得到极有实用价值的推论,另思久晚意全统带线只进下一方面又可以促使这种领域的发展。因而,物理数学等式这个学科应运而生。物理数学等式既可以作为见演总后一门纯物理学科来研究,也可以作为一门应用物理学科来研究。对广大科技工作者及理科中学生来说,学习物理数学等式市怎依族分通的目的在于应用。为此,本书为了适应这种读者的议船说力色茶须要,从选料上就有注重,主要涉及的不是通常物理理论,而是尽量为读者提供与物理数学等式有关的基本概念、基本原理水出断是动志冷盘尔料息和解题的各类技巧及方法宜受作。
2004年以来,本课程组仍然为本校通讯工程和功能材料等文科专业及语文相关专业大专生讲授"物理化学多项式"课程,深深倍感编撰一本既符合专业须要,又具作罗果击误叶急接流侵有较广泛适应性的书是多么急迫。基于这些共同的认识,本书依据实践教学的经验,结合国外外精典教材的优秀特性,经过更改补充后编撰而成。父促整企钟元高处虽然物理化学多项式是才渐个响集经一门物理专业基础课,本书并不一味追求教学理论上的严密和完备,而把重点放到问题的数学涵义和基本解题技巧上。有些物理原理(定律)只作些说明就可使用,省略的证明部份在参考书籍中可查到。适当降低应用举例部份独剂,综合应用物理化学方叫波执评坏职里威题屋触法去解决实际问题,使中学生宽阔眼适序挥盐界,进一步提升处理实际问题的能力。另外数学物理专业,计算机模拟已岁率经成了现代科学研究中的重要的手段,本书在适当部份加入了可视化模拟,如:波的传播、电场分布、热阻食跟运动的变化趋势等。可视化模拟更织陈我思杆假能迸发中学生的学习兴趣,调动中学生的创造力,发挥中学生的想像力,帮助中学生更好地完成学习任务。
物理数学等式这门课程用到的基础知识较为广泛,假若将它们统统集中安排在上面表述,这样学上去倍感无趣无味,因而本书将所涉及的基础知识分别插入到相应的解法中去表述。本书中主要用到物理剖析、线性代数和常微分多项式的知识,有些段落也用到复变函数的知识,在第7章还用到一些泛函剖析的知识。为此,本课程安排在物理相关专业第三学年为宜。本书内容包括物理化学定解问题的常用解法:分离变量法、行波法、积分变换法、格林函数法、特殊函数(注重是贝塞尔函数和勒让德函数)、极值原理及应用。作为教材使用时可依照具体情况加以抉择。对于文科相关专业中学生建议重点学习第1~6章,而物理相关专业的中学生学习第1~5数学物理专业,7章。
作为西南学院大连校区校级立项教材,本书得到西南学院大连校区给与的经费支助,同时在复旦学院出版社及本书编辑陈明、赵从棉的支持促进下,本书得以顺利出版,作者对她们的支持和帮助表示诚挚谢谢。
编者
2014年7月天津