当前位置首页 > 校外拓展 > 课外拾零

必修二数学题

更新时间:2024-04-09 文章作者:admin3 信息来源:http://wuliok.com 阅读次数:

半径为R,剪开后圆弧长L1、L2之比与圆心角之比同为3:4,即
L1=(3/7)2πR;L2=(4/7)2πR

卷成圆锥如图2,圆锥底面半径分别为
r1=L1/2π=(3/7)2πR/2π==(3/7)R
r2=L2/2π=(4/7)2πR/2π==(4/7)R

圆锥底面面积分别为
S1=πr1^2=π(3R/7)^2
S2=πr2^2=π(4R/7)^2

圆锥高分别为
h1=(R^2-r1^2)^(1/2)
h2=(R^2-r2^2)^(1/2)

圆锥体积分别为
V1=S1h1/3=π(3R/7)^2×(R^2-(3R/7)^2)^(1/2)
V2=S2h2/3=π(4R/7)^2×(R^2-(4R/7)^2)^(1/2)

两圆锥体积之比
V1/V2=[(3R/7)^2×(R^2-(3R/7)^2)^(1/2)]/[(4R/7)^2×(R^2-(4R/7)^2)^(1/2)]=(9×√10)/(8×√33)≈0.6193EA9物理好资源网(原物理ok网)

高一数学必修二试题

先画图,得出此题可分两种情况讨论
(注:下面答案里“A1、M1、N1、x1、y1、A2、M2、N2、x2、y2”中的1、2分别表示A、M、N、x、y的下角码)
情况一:向量BA1//向量CD,角A=角D=90度,此时设A1(M1,N1)
向量BA1=向量OA1-向量OB=(M1,N1)-(6,1)=(M1-6,N1-1)
向量CD=向量OD-向量OC=(2,5)-(3,3)=(-1,2)
向量DA1=向量OA1-向量OD=(M1,N1)-(2,5)=(M1-2,N1-5)
因为:向量BA1//向量CD
所以:由x1y2-x2y1=0得,2M1-12-1+N1=0 [1]
因为:向量DA1垂直于向量CD
所以:由向量DA1*向量CD=0得,2-M1+2N1-10=0 [2]
[1][2]连立,解得:M1=3.6,N1=5.8
情况二:向量A2D//向量BC,角A2=角B=90度,此时设A2(M2,N2)
向量A2D=向量OD-向量OA2=(2,5)-(M2,N2)=(2-M2,5-N2)
向量BC=向量OC-向量OB=(3,3)-(6,1)=(-3,2)
向量BA2=向量OA2-向量OB=(M2,N2)-(6,1)=(M2-6,N2-1)
因为:向量向量A2D//向量BC
所以:x1y2-x2y1=0得,4-2M2+15-3N2=0 [3]
因为:向量BA2垂直于向量BC
所以:由向量BA2*向量BC=0得,-3M2+18+2N2-2=0 [4]
[3][4]连立,解得:M2=13分之86,N2=25分之13
所以,M1=3.6,N1=5.8或M2=13分之86,N2=25分之13 时,四边形ABCD为直角梯形。EA9物理好资源网(原物理ok网)

发表评论

统计代码放这里