下载地址
先选择下载地址,再点击下载,若为站外链接的下载地址,则所需的“提取码”统一在”资源介绍“的文末!
本地下载
资源介绍
2012~2021十年高考汇编·专题33 热力学综合1(解析版).doc
====================
专题33 热学综合1
(2012-2021)
目录
题型一、分子间相互作用力 1
题型二、分子动理论、液体气体压强 2
题型三、油膜法测分子直径 6
题型四、理想气体状态方程 7
题型五、气缸模型 11
题型六、液柱模型 16
题型一、分子间相互作用力
1.(2020全国1)分子间作用力F与分子间距r的关系如图所示,r= r1时,F=0。分子间势能由r决定,规定两分子相距无穷远时分子间的势能为零。若一分子固定于原点O,另一分子从距O点很远处向O点运动,在两分子间距减小到r2的过程中,势能_____(填“减小“不变”或“增大”);在间距由r2减小到r1的过程中,势能_____ (填“减小”“不变”或“增大”);在间距等于r1处,势能_____(填“大于”“等于”或“小于”)零。
【答案】 (1). 减小 (2). 减小 (3). 小于
【解析】1从距 点很远处向 点运动,两分子间距减小到 的过程中,分子间体现引力,引力做正功,分子势能减小;
2在 过程中,分子间仍然体现引力,引力做正功,分子势能减小;
3在间距等于 之前,分子势能一直减小,取无穷远处分子间势能为零,则在 处分子势能小于零。
2.(2020北京)分子力 随分子间距离 的变化如图所示。将两分子从相距 处释放,仅考虑这两个分于间的作用,下列说法正确的是( )
A. 从 到 分子间引力、斥力都在减小
B. 从 到 分子力的大小先减小后增大
C. 从 到 分子势能先减小后增大
D. 从 到 分子动能先增大后减小
【答案】D
【解析】A.从 到 分子间引力、斥力都在增加,但斥力增加得更快,故A错误;
B.由图可知,在 时分子力为零,故从 到 分子力的大小先增大后减小再增大,故B错误;
C.分子势能在 时分子势能最小,故从 到 分子势能一直减小,故C错误;
D.从 到 分子势能先减小后增大,故分子动能先增大后减小,故D正确。
故选D。
题型二、分子动理论、液体气体压强
3.(2020江苏)玻璃的出现和使用在人类生活里已有四千多年的历史,它是一种非晶体。下列关于玻璃的说法正确的有( )
A. 没有固定的熔点
B. 天然具有规则的几何形状
C. 沿不同方向的导热性能相同
D. 分子在空间上周期性排列
【答案】AC
【解析】根据非晶体的特点可知非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。它没有一定规则的外形。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点。故选AC。
4.(2020江苏)一瓶酒精用了一些后,把瓶盖拧紧,不久瓶内液面上方形成了酒精的饱和汽,此时_____(选填“有”或“没有”)酒精分子从液面飞出。当温度升高时,瓶中酒精饱和汽的密度_____(选填“增大”“减小”或“不变”)。
【答案】 (1). 有 (2). 增大
【解析】形成饱和气后,酒精还是会蒸发,只是液体里跑到气体中的分子和气体中的分子跑到液体里的速度一样快,整体来看是不变的。即此时仍然会有酒精分子从液面飞出;温度升高使气体分子的动能增大,离开液体表面的气体分子更多,饱和汽密度增大。
5.(2019全国1)下列说法正确的是
A. 温度标志着物体内大量分子热运动的剧烈程度
B. 内能是物体中所有分子热运动所具有的动能的总和
C. 气体压强仅与气体分子的平均动能有关
D. 气体膨胀对外做功且温度降低,分子 平均动能可能不变
【答案】A
【解析】:根据温度是分子平均动能的标志确定气体分子热运动的程度和分子平均动能变化,内能是分子平均动能和分子势总和,由气体压强宏观表现确定压强
A.温度是分子平均动能 标志,所以温度标志着物体内大量分子热运动的剧烈程度,故A正确;
B.内能是物体中所有分子热运动所具有的动能和分子势能之和,故B错误;
C.由压强公式 可知,气体压强除与分子平均动能(温度)有关,还与体积有关,故C错误;
D.温度是分子平均动能的标志,所以温度降低,分子平均动能一定变小,故D错误。
6.(2018北京)关于分子动理论,下列说法正确的是
A. 气体扩散的快慢与温度无关
B. 布朗运动是液体分子的无规则运动
C. 分子间同时存在着引力和斥力
D. 分子间的引力总是随分子间距增大而增大
【答案】C
【解析】A、扩散的快慢与温度有关,温度越高,扩散越快,故A错误;
B、布朗运动为悬浮在液体中固体小颗粒的运动,不是液体分子的热运动,固体小颗粒运动的无规则性,是液体分子运动的无规则性的间接反映,故B错误;学科&网
C、分子间斥力与引力是同时存在,而分子力是斥力与引力的合力,分子间的引力和斥力都是随分子间距增大而减小;当分子间距小于平衡位置时,表现为斥力,即引力小于斥力,而分子间距大于平衡位置时,分子表现为引力,即斥力小于引力,但总是同时存在的,故C正确,D错误。
7.(2018全国2)对于实际的气体,下列说法正确的是______。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分。没选错1个扣3分,最低得分为0分)
A.气体的内能包括气体分子的重力势能
B.气体的内能包括分子之间相互作用的势能
C.气体的内能包括气体整体运动的动能
D.气体体积变化时,其内能可能不变
E.气体的内能包括气体分子热运动的动能
【答案】:BDE
【解析】气体的内能包括气体分子的动能和分子势能,不包括其中立势能,分子之间的势能是不能悲忽律的,包括在气体分子的内能里,所以A错B对,E对;气体的内能不包括分子宏观运动的动能,C错,气体内能的变化受气体做功与热传递二者决定,所以D选项正确
8.(2018全国1)的变化分别如图中两条曲线所示。下列说法正确的是________。
A.图中两条曲线下面积相等
B.图中虚线对应于氧气分子平均动能较小的情形
C.图中实线对应于氧气分子在100 ℃时的情形
D.图中曲线给出了任意速率区间的氧气分子数目
E.与0 ℃时相比,100 ℃时氧气分子速率出现在0~400 m/s区间内的分子数占总分子数的百分比较大
【答案】: ABC
【解析】:A对:面积表示总的氧气分子数,二者相等。
B对:温度是分子平均动能的标志,温度越高,分子的平均动能越大,虚线为氧气分子在0 ℃时的情形,分子平均动能较小。
C对:实线为氧气分子在100 ℃时的情形。
D错:曲线给出的是分子数占总分子数的百分比。
E错:速率出现在0~400 m/s区间内,100 ℃时氧气分子数占总分子数的百分比较小。
9. (2015全国2)关于扩散现象,下列说法正确的是
A.温度越高,扩散进行得越快
B.扩散现象是不同物质间的一种化学反应
C.扩散现象是由物质分子无规则运动产生的
D.扩散现象在气体、液体和固体中都能发生
E.液体中的扩散现象是由于液体的对流形成的
【答案】ACD
【解析】:温度高,分子扩散速度加快A选项正确;扩散属于物理反应所以B选项错误;扩散现象是由物质的分子无规则的运动产生故C正确;扩散在气体液体以及固体中都能进行故D对 液体中的扩散现象时有液体分子的无规则运动产生,故E错误。
考点:分子动理论
10.(2015山东)墨滴入水,扩而散之,徐徐混匀。关于该现象的分析正确的是_ ____。(双选,填正确答案标号)
a.混合均匀主要是由于碳粒受重力作用
b.混合均匀的过程中,水分子和碳粒都做无规则运动
c.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速
d.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的
【答案】BC
【解析】:根据分子动理论的只是可知,混合均匀主要是因为水分子在做无规则的运动使得碳离子造成布朗运动,又因为布朗运动的剧烈程度与碳粒子的大小及温度有关,所以使用比碳粒子更小的墨汁做实验,布朗运动会变得更明显。
11.(2015广东)为某实验器材的结构示意图,金属内筒和隔热外筒间封闭了一定体积的空气,内筒中有水,在水加热升温的过程中,被封闭的空气( )
A.内能增大 B.压强增大
C.分子间引力和斥力都减小 D.所有分子运动速率都增大
【答案】AB
【解析】本题考查了热学基础知识,题目中器材包含了金属内筒和隔热外筒,水加热升温,封闭空气温度升高,而外筒隔热,不会有能量损失,则当加热水时,热量通过金属筒传给气体,气体内能增加,温度升高,选项A正确;气体体积不变,温度升高,由理想气体状态方程右知压强增加,选项B正确;分子间的引力和斥力与分子间的距离有关,气体体积不变,分子间距不变,分子间的引力和斥力不变,选项C错误;温度只是与气体分子平均动能有关,温度增加并不是所有分子速率增加,选项D错误 。
题型三、油膜法测分子直径
12.(2019全国3)用油膜法估算分子大小的实验中,首先需将纯油酸稀释成一定浓度的油酸酒精溶液,稀释的目的是________________________________________________________________。实验中为了测量出一滴已知浓度的油酸酒精溶液中纯油酸的体积,可以________________________________________________________________________________。为得到油酸分子的直径,还需测量的物理量是___________________________________。
【答案】:见解析
【解析】:使油酸在浅盘的水面上容易形成一块单分子层油膜 把油酸酒精溶液一滴一滴地滴入小量筒中,测出1 mL油酸酒精溶液的滴数,得到一滴溶液中纯油酸的体积 单分子层油膜的面积
13.(2015海南)已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏伽德罗常数为 ,地面大气压强为 ,重力加速度大小为g。由此可以估算得,地球大气层空气分子总数为 ,空气分子之间的平均距离为 。
【答案】 ,
【解析】设大气层中气体的质量为m,由大气压强产生, ,即:
分子数 ,假设每个分子占据一个小立方体,各小立方体紧密排列,则小立方体边长即为空气分子平均间距,设为a,大气层中气体总体积为V, ,而 ,所以
题型四、理想气体状态方程
14.(2021广东)在高空飞行的客机上某乘客喝完一瓶矿泉水后,把瓶盖拧紧。下飞机后发现矿泉水瓶变瘪了,机场地面温度与高空客舱内温度相同。由此可判断,高空客舱内的气体压强______(选填“大于”、“小于”或“等于”)机场地面大气压强:从高空客舱到机场地面,矿泉水瓶内气体的分子平均动能______(选填“变大”、“变小”或“不变”)。
【答案】 (1). 小于 (2). 不变
【解析】[1]机场地面温度与高空客舱温度相同,由题意知瓶内气体体积变小,以瓶内气体为研究对象,根据理想气体状态方程
故可知高空客舱内的气体压强小于机场地面大气压强;
[2]由于温度是平均动能的标志,气体的平均动能只与温度有关,机场地面温度与高空客舱温度相同,故从高空客舱到机场地面,瓶内气体的分子平均动能不变。
15.(2019海南) 如图,一封闭的圆柱形容器竖直放置在水平地面上,一重量不可忽略的光滑活塞将容器内的理想气体分为A、B两部分,A体积为 ,压强为 ;B体积为 ,压强为 。现将容器缓慢转至水平,气体温度保持不变,求此时A、B两部分气体的体积。
【答案】 ;
【解析】设容器转至水平时,AB两部分气体的体积分别为V1和V2,两部分气体的压强均为P,则对气体A: ;
气体B: ;
其中
联立解得: ,
16.(2020山东)中医拔罐的物理原理是利用玻璃罐内外的气压差使罐吸附在人体穴位上,进而治疗某些疾病。常见拔罐有两种,如图所示,左侧为火罐,下端开口;右侧为抽气拔罐,下端开口,上端留有抽气阀门。使用火罐时,先加热罐中气体,然后迅速按到皮肤上,自然降温后火罐内部气压低于外部大气压,使火罐紧紧吸附在皮肤上。抽气拔罐是先把罐体按在皮肤上,再通过抽气降低罐内气体压强。某次使用火罐时,罐内气体初始压强与外部大气压相同,温度为450 K,最终降到300 K,因皮肤凸起,内部气体体积变为罐容积的 。若换用抽气拔罐,抽气后罐内剩余气体体积变为抽气拔罐容积的 ,罐内气压与火罐降温后的内部气压相同。罐内气体均可视为理想气体,忽略抽气过程中气体温度的变化。求应抽出气体的质量与抽气前罐内气体质量的比值。
【答案】
【解析】设火罐内气体初始状态参量分别为p1、T1、V1,温度降低后状态参量分别为p2、T2、V2,罐的容积为V0,由题意知
p1=p0、T1=450 K、V1=V2、T2=300 K、V2=20V0/21 ①
由理想气体状态方程得
②
代入数据得
p2=0.7p0 ③
对于抽气罐,设初态气体状态参量分别为p3、V3,末态气体状态参量分别为p4、V4,罐的容积为 ,由题意知
p3=p0、V3= 、p4=p2 ④
由玻意耳定律得
⑤
联立②⑤式,代入数据得
⑥
设抽出的气体的体积为ΔV,由题意知
⑦
故应抽出气体的质量与抽气前罐内气体质量的比值为
⑧
联立②⑤⑦⑧式,代入数据得
⑨
17.(2020海南)如图,圆柱形导热气缸长 ,缸内用活塞(质量和厚度均不计)密闭了一定质量的理想气体,缸底装有一个触发器D,当缸内压强达到 时,D被触发,不计活塞与缸壁的摩擦。初始时,活塞位于缸口处,环境温度 ,压强 。
(1)若环境温度不变,缓慢向下推活塞,求D刚好被触发时,到缸底的距离;
(2)若活塞固定在缸口位置,缓慢升高环境温度,求D刚好被触发时的环境温度。
【答案】(1) ;(2)
【解析】(1) 设气缸横截面积为 ;D刚好被触发时,到缸底的距离为 ,根据玻意耳定律得
带入数据解得
(2)此过程为等容变化,根据查理定律得
带入数据解得
18.(2015重庆)北方某地的冬天室外气温很低,吹出的肥皂泡会很快冻结. 若刚吹出时肥皂泡内气体温度为 ,压强为 ,肥皂泡冻结后泡内气体温度降为 .整个过程中泡内气体视为理想气体,不计体积和质量变化,大气压强为 .求冻结后肥皂膜内外气体的压强差.
【答案】
【解析】对气泡分析发生等容变化有:
,
可得: ,故内外气体的压强差为
题型五、气缸模型
19.(2020全国1)甲、乙两个储气罐储存有同种气体(可视为理想气体)。甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为 。现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等。求调配后:
(i)两罐中气体的压强;
(ii)甲罐中气体的质量与甲罐中原有气体的质量之比。
【答案】(i) ;(ii)
【解析】(i)气体发生等温变化,对甲乙中的气体,可认为甲中原气体有体积V变成3V,乙中原气体体积有2V变成3V,则根据玻意尔定律分别有
,
则
则甲乙中气体最终压强
(ii)若调配后将甲气体再等温压缩到气体原来的压强为p,则
计算可得
由密度定律可得,质量之比等于
20.(2020全国3)如图,一开口向上的导热气缸内。用活塞封闭了一定质量的理想气体,活塞与气缸壁间无摩擦。现用外力作用在活塞上。使其缓慢下降。环境温度保持不变,系统始终处于平衡状态。在活塞下降过程中( )
A 气体体积逐渐减小,内能增知
B. 气体压强逐渐增大,内能不变
C. 气体压强逐渐增大,放出热量
D. 外界对气体做功,气体内能不变
E. 外界对气体做功,气体吸收热量
【答案】BCD
【解析】A.理想气体的内能与温度之间唯一决定,温度保持不变,所以内能不变。A错误;
B.由理想气体状态方程 ,可知体积减少,温度不变,所以压强增大。因为温度不变,内能不变。B正确;CE.由理想气体状态方程 ,可知体积减少,温度不变,所以压强增大。体积减少,外接对系统做功,且内能不变,由热力学第一定律 可知,系统放热。C正确;E错误。
D.体积减少,外接对系统做功。理想气体的内能与温度之间唯一决定,温度保持不变,所以内能不变。故D正确。故选BCD。
21.(2019全国2)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在地面上,汽缸内壁光滑。整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气。平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p。现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:
(1)抽气前氢气的压强;
(2)抽气后氢气的压强和体积。
【答案】(1) (p0+p);(2) ;
【解析】(1)设抽气前氢气的压强为p10,根据力的平衡条件得
(p10–p)·2S=(p0–p)·S①
得p10= (p0+p)②
(2)设抽气后氢气的压强和体积分别为p1和V1,氢气的压强和体积分别为p2和V2,根据力的平衡条件有p2·S=p1·2S③
由玻意耳定律得p1V1=p10·2V0④
p2V2=p0·V0⑤
由于两活塞用刚性杆连接,故
V1–2V0=2(V0–V2)⑥
联立②③④⑤⑥式解得
⑦
⑧
22.(2019全国1)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直至容器中的空气压强与外界相同。此时,容器中空气的温度__________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________(填“大于”“小于”或“等于”)外界空气的密度。
【答案】 (1). 低于 (2). 大于
【解析】:由题意可知,容器与活塞绝热性能良好,容器内气体与外界不发生热交换,故 ,但活塞移动的过程中,容器内气体压强减小,则容器内气体正在膨胀,体积增大,气体对外界做功,即 ,根据热力学第一定律可知: ,故容器内气体内能减小,温度降低,低于外界温度。
最终容器内气体压强和外界气体压强相同,根据理想气体状态方程:
又 ,m为容器内气体质量联立得:
取容器外界质量也为m的一部分气体,由于容器内温度T低于外界温度,故容器内气体密度大于外界。故本题答案 :低于;大于。
23.(2018全国2)如图,一竖直放置的气缸上端开口,气缸壁内有卡口a和b,a、b间距为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体。已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计他们之间的摩擦。开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0。现用电热丝缓慢加热气缸中的气体,直至活塞刚好到达b处。求此时气缸内气体的温度以及在此过程中气体对外所做的功。重力加速度大小为g。
(1)开始时活塞位于a处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动。设此时汽缸中气体的温度为T1,压强为p1,根据查理定律有
①
根据力的平衡条件有
②
联立①②式可得
③
此后,汽缸中的气体经历等压过程,直至活塞刚好到达b处,设此时汽缸中气体的温度为T2;活塞位于a处和b处时气体的体积分别为V1和V2。根据盖—吕萨克定律有
④
式中
V1=SH⑤
V2=S(H+h)⑥
联立③④⑤⑥式解得:
⑦
从开始加热到活塞到达b处的过程中,汽缸中的气体对外做的功为
⑧
24.(2015山东)扣在水平桌面上的热杯盖有时会发生被顶起的现象;如图,截面积为S的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300K,压强为大气压强P0。当封闭气体温度上升至303K时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部压强立即减为P0,温度仍为303K。再经过一段时间,内部气体温度恢复到300K。整个过程中封闭气体均可视为理想气体。求:
(ⅰ)当温 度上升到303K且尚未放气时,封闭气体的压强;
(ⅱ)当温度恢复到300K时,竖直向上提起杯盖所需的最小力。
【答案】(ⅰ)1.01P0;(ⅱ)0.02P0S
【解析】(ⅰ)气体进行等容变化,开始时,压强P0,温度T0=300K;当温度上升到303K且尚未放气时,压强为P1,温度T1=303K;根据 可得:
(ⅱ)当内部气体温度恢复到300K时,由等容变化方程可得: ,
解得
当杯盖恰被顶起时有:
若将杯盖提起时所需的最小力满足: ,
解得:
题型六、液柱模型
25.(2020全国3)如图,两侧粗细均匀、横截面积相等、高度均为H=18cm的U型管,左管上端封闭,右管上端开口。右管中有高h0= 4cm的水银柱,水银柱上表面离管口的距离l= 12cm。管底水平段的体积可忽略。环境温度为T1=283K。大气压强p0 =76cmHg。
(i)现从右侧端口缓慢注入水银(与原水银柱之间无气隙),恰好使水银柱下端到达右管底部。此时水银柱的高度为多少?
(ii)再将左管中密封气体缓慢加热,使水银柱上表面恰与右管口平齐,此时密封气体的温度为多少?
【答案】(i)12.9cm;(ii)363K
【解析】(i)设密封气体初始体积为V1,压强为p1,左、右管的截面积均为S,密封气体先经等温压缩过程体积变为V2,压强变为p2.由玻意耳定律有
设注入水银后水银柱高度为h,水银的密度为ρ,按题设条件有 ,
,
联立以上式子并代入题给数据得h=12.9cm;
(ii)密封气体再经等压膨胀过程体积变为V3,温度变为T2,由盖一吕萨克定律有
按题设条件有 代入题给数据得:T=363K
26.(2016·全国3)一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞。初始时,管内汞柱及空气柱长度如图所示。用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止。求此时右侧管内气体的压强和活塞向下移动的距离。已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p0=75.0 cmHg。环境温度不变。
【答案】: 144 cmHg 9.42 cm
【解析】: 设初始时,右管中空气柱的压强为p1,长度为l1;左管中空气柱的压强为p2=p0,长度为l2。活塞被下推h后,右管中空气柱的压强为p1′,长度为l1′;左管中空气柱的压强为p2′,长度为l2′。以cmHg为压强单位。
由题给条件得p1=p0+(20.0-5.00) cmHg① l1′=(20.0-20.0-5.002) cm②
由玻意耳定律得p1l1=p1′l1′③
联立①②③式和题给条件得
p1′=144 cmHg④
依题意p2′=p1′⑤
l2′=4.00 cm+20.0-5.002cm-h⑥
由玻意耳定律得p2l2=p2′l2′⑦
联立④⑤⑥⑦式和题给条件得h=9.42 cm
27.(2019全国3)如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm。若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。已知大气压强为76 cmHg,环境温度为296 K。
(i)求细管的长度;
(i)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。
【答案】见解析
【解析】(i)设细管的长度为L,横截面的面积为S,水银柱高度为h;初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,气体体积为V1,压强为p1。由玻意耳定律有
pV=p1V1 ①
由力的平衡条件有
p=p0+ρgh ②
p1=p0–ρgh ③
式中,ρ、g分别为水银的密度和重力加速度的大小,p0为大气压强。由题意有
V=S(L–h1–h) ④
V1=S(L–h) ⑤
由①②③④⑤式和题给条件得
L=41 cm ⑥
(ii)设气体被加热前后的温度分别为T0和T,由盖–吕萨克定律有
⑦
由④⑤⑥⑦式和题给数据得
T=312 K ⑧
28.(2018全国3)在两端封闭、粗细均匀的U形细玻璃管内有一股水银柱,水银柱的两端各封闭有一段空气。当U形管两端竖直朝上时,左、右两边空气柱的长度分别为l1=18.0 cm和l2=12.0 cm,左边气体的压强为12.0 cmHg。现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边。求U形管平放时两边空气柱的长度。在整个过程中,气体温度不变。
【答案】7.5 cm
【解析】试题分析 本题考查玻意耳定律、液柱模型、关联气体及其相关的知识点。
解析 设U形管两端竖直朝上时,左、右两边气体的压强分别为p1和p2。U形管水平放置时,两边气体压强相等,设为p,此时原左、右两边气体长度分别变为l1′和l2′。由力的平衡条件有
①
式中 为水银密度,g为重力加速度大小。
由玻意耳定律有
p1l1=pl1′②
p2l2=pl2′③
l1′–l1=l2–l2′④
由①②③④式和题给条件得
l1′=22.5 cm⑤
l2′=7.5 cm⑥
29.(2018全国1)如图,容积为V的汽缸由导热材料制成,面积为S的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K。开始时,K关闭,汽缸内上下两部分气体的压强均为 。现将K打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为 时,将K关闭,活塞平衡时其下方气体的体积减小了 。不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g。求流入汽缸内液体的质量。
【答案】见解析
【解析】设活塞再次平衡后,活塞上方气体的体积为 ,压强为 ;下方气体的体积为 ,压强为 。在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得
①
②
由已知条件得
③
④
设活塞上方液体的质量为m,由力的平衡条件得
⑤
联立以上各式得
⑥
30.(2014全国)粗细均匀、导热良好、装有适量水银的U型管竖直放置,右端与大气相通,左端封闭气柱长 (可视为理想气体),两管中水银面等高。现将右端与一低压舱(未画出)接通,稳定后右管水银面高出左管水银面 。(环境温度不变,大气压强 )
①求稳定后低压舱内的压强(用“cmHg”作单位)。
②此过程中左管内的气体对外界______________(填“做正功”“做负功”或“不做功”),气体将_____________________(填“吸热”或 “放热”)。
【答案】:见解析
【解析】设U型管横截面积为S,右端与大气相通时左管中封闭气体压强为 ,右端与一低压舱接通后左管中封闭气体压强为 ,气柱长度为 ,稳定后低压舱内的压强为 。左管中封闭气体发生等温变化,根据玻意耳定律得
P1V1=P2V2
P1=P0
P2=P+Ph V1=L1S V2=L2S
由几何关系得:h=2(l2-l1)
联立以上各式代入数据得:P=50cmHg.
(2) 做正功;吸热
气体不对外做功,气体将吸热。
|
发表评论