使用不同的方法验证可使学生明白如何通过实验发现、验证一些科学规律,体验一下探究过程,提高科学素养;从小的方面讲,通过实验中的一些问题(如弹簧称的调零、怎样将溢水杯灌满水、自己亲自动手制作一些实验装置),可大大提高学生的实践能力,锻炼学生收集资料、处理信息的能力。
阿基米德折弦定理:AB和BC是⊙O的两条弦(即ABC是圆的一条折弦),BC>AB,M是弧ABC的中点,则从M向BC所作垂线之垂足G是折弦ABC的中点,即AB+BG=GC。
从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦。
大家都知道,平面几何中圆的下述性质:“过圆O上弧AB的中点,作弦AB的垂线,则垂足必将弦AB平分。”和圆的弦相同,折弦也对着两条弧,折弦也有自己的性质,即阿基米德折弦定理.
证明方法:
已知: M为弧AC的中点 MG垂直弦BC 求证:CG=AB+BG 证明:延长AB到E使GB=BE 再连接兰色的线段 可得CM=AM ∠MCB=∠MAE(同弧所对圆周角) ∠MBE=∠MCA(∠MBA+∠MBE=∠MBA+∠MCA=180度)=∠MAC=∠MBC 所以三角形MGB 全等于三角形MEB 所以ME=MG且∠MEB=∠MGB=90度 又由上知 所以三角形MAE 全等于 三角形MCG 所以CG=AE=AB+BE=AB+BG