问题编号
一
二
三
总得分
分数
1.选择题(本大题共8题,共32.0分)
以下哪项陈述是正确的?
B、匀速圆周运动的线速度、角速度、周期都是常数。
C. 牛顿第三定律也适用于物体处于非平衡状态
D. 物体沿着光滑的斜坡滑下。 由于惯性,物体的速度不断增加。
一个物体的质量为
A、匀加速直线运动; B、匀减速直线运动;
C、匀速曲线运动; D. 变加速度曲线运动。
有质量的物体在平面上做曲线运动。 该方向的速度图像和该方向的位移图像分别如图A和图B所示。 以下哪项陈述是正确的?
A.粒子的初速度为
B. 粒子上的合力为
C、质点初速度方向与合力方向垂直
D. 最终粒子的速度为
下列关于摩擦力的叙述哪一项是正确的?
A、阻碍物体运动的力称为摩擦力
B.静摩擦力的方向可以垂直于物体的运动方向
C.滑动摩擦力的方向总是与物体运动的方向相反
D.静摩擦力的大小会随着压力的增加而增加
如图所示,用书本在水平桌子上做一个斜面,让小钢球从斜面上的某个位置滚下,离开桌子后做一个平抛运动,粗略地测量出初始值。小钢球水平抛掷时的速度,下列设备中最合适的是
A. 学生三角尺 B. 米尺 C. 秒表 D. 打点计时器
如图所示,小船在静水中过河,速度大小和方向与上游河岸一致。 经过一定的时间后,到达对岸。现在,为了让船在更短的时间内过河并准确地到达对岸,当水流速度加快时,可以采用以下哪种方法保持不变?
A.只增加尺寸,不改变角度
B.只需增加角度,无需改变尺寸
C.增大的同时,角度也要适当增大
D.在增大的同时,角度也要适当减小
下列关于运动和力的表述哪一项是正确的?
A. 做曲线运动的物体所受的合力一定会改变。
B. 沿曲线运动的物体的速度可以保持恒定。
C、当物体做匀速圆周运动时,合力必定指向圆心。
D、绕地球作匀速圆周运动的卫星完全失重,因此不受重力的影响。
如图所示,将一个质量为 的圆环放置在倾斜的滑杆上。 该环通过一根轻绳拉动质量为 的物体。 当环沿滑杆向下滑动时,光绳将物体悬浮起来。 始终处于垂直方向。 但。
A.环仅受到三种力的作用
B. 环必须受到四种力的作用
C、物体做匀加速运动
D、吊绳对物体的拉力小于物体的重力
2、选择题(本大题共4道小题,共16.0分)
如图所示,两个小球从地面同一位置抛出,分别落在地面上的点上。 两个球的最大高度相同,忽略空气阻力,则
A. 的加速度等于
B.飞行时间大于
C.最高点的速度与最高点的速度一样大
D、落地时的速度大于落地时的速度。
关于曲线运动,下列哪种说法是正确的?
A.物体在恒力作用下可以作曲线运动
B、匀速圆周运动是加速度恒定的曲线运动。
C、曲线运动速度的方向不断改变,但速度的大小不一定改变。
D. 质点在某一点的速度方向是沿着曲线上该点的切线方向。
如图所示,两个小球A、B从同一固定斜坡的最高点水平抛出,分别落到斜坡上的两点。 该点是 的中点,无论空气阻力如何。以下哪项陈述是正确的?
A. 两个球 A 和 B 接触斜坡前一刻,它们的速度方向相同。
B、两球A、B接触斜坡前一刻的速度之比为:
C. A、B 两个球平掷一次所需时间之比为:
D、两个球A、B水平投掷时的初速度之比为:
如图所示斜面平抛运动时间公式,物体在五个公共点力的作用下保持静止状态。 如果逐渐减小到 ,而其他四个力保持不变,那么在这个过程中
A.物体向相反方向加速
B.物体沿某方向加速
C. 物体做加速运动,且加速度逐渐增大。
D. 物体做加速运动,加速度逐渐减小。
3.计算题(本大题共1道小题,共10.0分)
分水平台表面距水平地面较高。 在某一时刻,滑块(可以看作一个粒子)获得一定量级的初始速度,并冲向平台边缘。 滑块与工作台之间的动摩擦系数是已知的,并且无论空气阻力如何,滑块与工作台边缘之间的距离是。
求:球在空中飞行的时间;
球落地点与投掷点之间的水平距离;
答案与分析
1.【解答】
【分析】
【分析】
平抛运动的加速度不变,而匀速圆周运动的线速度和加速度不变,但方向始终在变化。 牛顿第三定律揭示了作用力和反作用力之间的关系,并且适用于平衡状态和非平衡状态。
解决这个问题的关键是要了解平面运动和圆周运动的特点。 平面运动的加速度不变,匀速圆周运动的加速度不变,但方向一直在变化。
【回答】
A、平抛运动加速度不变,曲线运动匀变,故A错误;
B、匀速圆周运动的线速度保持不变,但方向始终在变化。 角速度的大小和方向不变,其周期也不变,故B错误;
C、牛顿第三定律在物体处于非平衡状态时也适用,故C正确;
D. 物体沿着光滑的斜坡滑下。 物体的加速是外力做功的结果,与惯性无关。 故D错误。
所以选择C。
2.【解答】
【分析】
【分析】
当物体所受的合力与其速度方向在同一直线上时,物体作直线运动。 当合力与速度方向不在同一直线上时,物体作曲线运动; 合力保持不变,加速度保持不变。
解决这个问题的关键是要知道物体做直线运动还是曲线运动的条件。 关键是看合力的方向和速度的方向是否在同一直线上。
【回答】
A、若去掉的恒力与初速度方向相反,则合力方向与初速度方向相同,物体将以匀加速直线运动,故A是正确的,但不符合问题的意思;
B、若去掉的恒力与初速度方向相同,则合力方向与初速度方向相反,物体将做匀减速直线运动,故B为正确但不符合题意;
C、如果去掉的恒力方向与初速度方向不在同一直线上,则合力方向与速度方向不在同一直线上,物体将作匀速曲线运动,故C正确,不符合题意;
D、物体去掉恒力后,合力恒定,加速度不变,因此不可能做变加速度曲线运动。 因此,D错误,符合题意。
所以选D。
3.【解答】
【分析】
【分析】
从图中可以看出,轴向做匀速直线运动,轴向做匀速直线运动。 速度和力根据平行四边形规则合成。
解决这个问题的关键是利用平行四边形法则来合成和分解运动。
【回答】
从 方向上的速度图像可以看出, 方向上的加速度为 ,力作用在 方向上。 从 方向上的位移图像可以看出,速度为该方向上的匀速直线运动。 因此,质点的初速度为 ,所施加的力 A 是错误的,B 是正确的;
C、合外力方向为轴向,故质点初速度方向与合外力方向不垂直,故C错误;
D. 最终的粒子速度应该是,D 是错误的。
所以选B。
4.【解答】
【分析】解答:摩擦力是两个接触面粗糙的物体直接接触并受到挤压,由于两个物体之间有相对运动或有相对运动趋势而产生的力。 它阻碍的是物体之间的相对运动。 但它可能阻碍或促进物体的运动,即可以是力量,也可以是阻力,所以A错误;
B.静摩擦力的方向可以垂直于物体的运动方向。 例如:对于车厢壁上静止的物体,沿水平方向加速,其静摩擦力是垂直方向,垂直于运动方向,故B正确;
C、滑动摩擦力的方向总是与物体的相对运动方向相反,也可能与物体的运动方向相同,故C错误;
D、静摩擦力的大小与压力的大小无关,而是与引起运动倾向的力有关,故D错误。
因此选择:。
摩擦力总是阻碍物体之间的相对运动,而不是阻碍物体的运动; 摩擦力的方向可以与运动方向相反,也可以与运动方向相同,也不能在一条直线上。
本题考查对摩擦力概念的理解。 必须注意的是,摩擦力阻碍物体之间的相对运动,其方向与相对运动的方向或相对运动的趋势相反。
5.【解答】
【分析】解决方法:球离开台面,做水平抛掷动作。 据,那么。
平抛运动的初速度需要测量桌面的高度和水平距离。 使用的设备是米尺。 因此,B正确,D错误。
因此选择:
水平投掷运动是水平方向的匀速直线运动和垂直方向的自由落体运动。 移动时间是根据高度计算的。 初始速度是根据水平位移计算的。 获得初始速度的表达式以确定所需的测量。 设备。
只有明确了实验原理和实验数据测量,才能明确每个实验操作的具体含义。 日常训练中必须加强这一点,物理实验中必须加强基本物理定律的应用。
6.【解答】
【分析】
【分析】
从题意可以看出斜面平抛运动时间公式,如果船在较短的时间内过河并到达对岸,船沿水流方向的部分速度将保持不变,而船的部分速度将保持不变。垂直于河岸方向的船会增加。 根据平行四边形法则,可解。
考察运动的合成与分解,掌握平行四边形法则的应用。 需要注意的是,为了让船在更短的时间内过河并准确地到达对岸,船在水流方向上的分速度必须恒定,并且船必须与河岸垂直。 应提高分钟速度。
【回答】
A、如果只增加尺寸而不改变角度,则船在水流方向的分速度增大,因此船无法垂直到达彼岸,故A错误;
B、如果只增加角度而不改变尺寸,同理可以看出,水流方向的分速度在减小,而垂直于河岸的分速度在增加。 船不可能垂直到达对岸,故B错误;
C、如果在增加的同时,角度也必须适当增加,以保证水流方向的分速度不变,而垂直于河岸的分速度不断增加,船舶仍能到达垂直另一侧,时间较短,故C正确;
D、如果在增大的同时必须适当减小角度,则水流方向的分速度会增大,无法垂直到达对岸,故D错误。
所以选择C。
7.【解答】
【分析】
【分析】
物体做曲线运动的条件是合力和速度不在同一条直线上,合外力的大小和方向不一定改变; 对于做曲线运动的物体,速度方向始终在变化; 对于做圆周运动的物体,它所受到的合力不一定指向圆心。 然而,做匀速圆周运动的物体所受的合力必须指向圆心; 匀速圆周运动的加速度发生变化,是变加速度运动。
本题的关键是准确理解曲线的条件和受力特性,理解和掌握向心力的特性,并通过实例进行分析。
【回答】
A.在恒力作用下,物体可以做曲线运动,如水平投掷运动,故A错误;
B、做曲线运动的物体,其速度方向始终在变化,故B错误;
C、做匀速圆周运动的物体所受的合力提供向心力,该向心力必定指向圆心,故C正确;
D. 卫星绕地球作匀速圆周运动。 向心力由重力提供。 它处于完全失重的状态。 卫星仍然受到重力的影响,所以D是错误的。
所以选择C。
8.【解答】
【分析】
【分析】
对于物体受力的分析,采用动力学的观点来分析圆环的匀速运动。 由于两个物体一起运动,因此两个物体以均匀的速度运动。 可以根据公共点力平衡和两个物体的受力条件来求解。
本题考察共点力平衡和曲线运动条件。 从动态的角度分析问题是解决问题的关键。 掌握受力和运动条件是解决问题的突破口。 同时要求学生掌握曲线运动的条件,并运用假设的方法进行判断。
【回答】
A、由于物体沿杆下滑,其受力分析:向上的拉力与自身重力方向相反。 如果合力不为零,则合力方向不垂直于速度方向,物体就会作曲线运动,因此结合物体的运动方向就知道物体所受的力是平衡的。 物体应以匀速运动。 环上的力分析包括重力、绳索张力和杆的弹力。 因为环和物体一起运动,所以它们以均匀的速度运动。 根据共同的点力平衡,我们还知道它受到沿杆向上的摩擦力,所以AC是错误的,B是正确的;
D. 由上面的分析可知,两个物体都以匀速运动。 从物体受力分析,绳子对物体的拉力等于物体的重力,故D错误。
所以选B。
9.【解答】
【分析】解:不考虑空气阻力,两个球的加速度都是重力加速度,大小相等,故A正确;
B. 两个球都倾斜抛出。 垂直方向的子运动是垂直向上的投掷运动。 根据运动的对称性,两个球的上升和下降时间相等,下降过程由垂直方向的位移决定。 可以得出时间公式,所以下落时间相等,则两个球的运动时间相等,所以B错误;
C、两个球的运动时间相同,但球的水平位移较大,故初始水平速度较大,球在最高点的速度也较大,故C错误;
D、根据速度合成可知,两个球的垂直初速度相等,球的水平初速度大,则 的初速度大于小球的初速度。 两个球在运动过程中机械能守恒。 可见落地时的速比比落地时的速比大,所以D是正确的。
因此选择:。
从运动的合成和分解规则可以看出,物体在水平方向做匀速直线运动,在垂直方向做垂直向上运动。 两个球的加速度相同。 垂直高度相同。 通过运动学公式分析了垂直方向的初始运动。 由速度关系,我们可以知道水平初速度之间的关系; 两个球在最高点的速度等于水平初速度; 通过速度综合分析初始速度之间的关系,我们可以从机械能守恒得知着陆速度之间的关系。
本题考查斜投运动,考验运用运动方法的合成与分解来处理斜投运动的能力。 根据运动学公式和对称性可以研究垂直向上投掷的分速度。
10.【答题】
【分析】解:物体在恒力作用下,可以做曲线运动,如水平投掷运动,只受重力影响。 因此A是正确的。
B、匀速圆周运动是指加速度方向始终指向圆心,即方向始终在变化,所以匀速圆周运动的加速度始终在变化,故B错误。
C、曲线运动的特点是速度方向始终变化,但速度可以保持不变,如匀速圆周运动,故C正确。
D、质点在某一点的速度方向是沿着曲线上该点的切线方向,所以D是正确的。
因此选择:。
物体做曲线运动的条件是合力和速度不在同一条直线上,合外力的大小和方向不一定改变。 由此,我们可以分析并得出结论。
解决问题的关键是考察物体曲线运动的特性。 匀速圆周运动、平抛运动等都属于曲线运动,必须掌握它们的特点。
11.【答题】
【分析】
【分析】
根据水平投掷运动某一时刻速度与水平方向夹角的正切值,即位移与水平方向夹角正切值的两倍,比较两个球的速度方向A、B此时跌倒在斜坡前,根据跌落的高度比较运动时间。 因此,将初始速度的比率与水平位移相结合以获得初始速度的比率。
本题考察平抛运动,并根据平抛运动的特点及其推论来解答。
【回答】
A、假设球落在斜坡上时,速度与水平方向的夹角为 ,位移与水平方向的夹角为 ,则由平抛运动的特点可知: ,位移与水平方向的夹角为常数值。 可见,两球接触斜面的瞬间,速度方向相同,故A正确;
因为两球下落高度之比为,根据,则可以看出,两球A、B运动时间之比为,则垂直速度之比为,因为速度两球落在斜坡上时的方向相同,根据平行四边形可知,两球接触斜面瞬间的速度之比为,故B错误,C正确;
D. 由于两球作平运动时的水平位移为 ,时间比为 ,则初速度之比为 ,故 D 错误。
所以选择交流电。
12.【答题】
【解析】解:物体处于静止平衡状态,合力为零,逐渐减小到,其他四个力保持不变。
那么物体所受的合力与 方向相反,物体的加速度方向与 方向相反,
随着它的减小,作用在物体上的合力逐渐增大。 根据牛顿第二定律,物体的加速度逐渐增大。
物体做加速运动,且加速度逐渐增大,故AC正确,BD错误。
因此选择:。
物体处于静止平衡状态,合力为零,并逐渐减小到 。 其他四股力量保持不变。 求出物体所受的合力,应用牛顿第二定律求出加速度,然后确定物体的运动。
知道平衡条件是解决问题的前提,分析清楚物体所受的力是解决问题的前提。 应用牛顿第二定律可以解决这个问题。
13.【解答】解法:滑块的平抛运动:,解法为:
滑块匀减速直线运动:,
滑块的平抛运动:
【解析】本题考查牛顿第二定律的应用、匀速直线运动定律的应用、平抛运动定律的应用。 理解物体的运动过程并选择相关的物理定律是解决问题的关键。
球在空中水平抛掷,垂直自由落体,可根据位移时间公式求解;
首先,根据匀减速运动的基本公式,求出球水平抛掷时的初速度。 球离开台面后,会沿水平方向匀速直线运动。 据此,即可解决该问题。